Московский государственный университет имени М.В.Ломоносова

Химический факультет

Кафедра физической химии

Расчетный практикум по химической термодинамике

РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЙ ТЕПЛОЕМКОСТИ

МОСКВА 2012 г.

РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЙ ТЕПЛОЕМКОСТИ

Теплоемкость является одной из основных теплофизических характеристик вещества. Данные о теплоемкости необходимы для расчета термодинамических свойств, составления теплового баланса в химических процессах, для выбора оптимальных составов теплоносителей и т.п.

І. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

При поглощении системой теплоты ее температура, как правило, увеличивается; средняя теплоемкость представляет собой количество теплоты Q, которое надо подвести к веществу, чтобы повысить его температуру на 1 градус. Если вместо конечных приращений оперировать с бесконечно малыми величинами (δQ , dT), то теплоемкость можно определить следующим образом:

$$C = \frac{\delta Q}{dT} \tag{1}$$

Как следует из формулы (1), теплоемкость имеет размерность [Дж (или кал)]-[градус $^{-1}$]. Обычно используют удельную теплоемкость, отнесенную к 1 г или 1 кг вещества (размерность — Дж· K^{-1} · Γ^{-1} или Дж· K^{-1} ·к Γ^{-1}), или мольную, отнесенную к 1 молю вещества (размерность — Дж · K^{-1} ·моль $^{-1}$).

Поскольку теплота не является свойством системы, а величина δQ не является полным дифференциалом, то значение теплоемкости, в общем случае, зависит от условий теплообмена. Однако в двух наиболее важных для практики процессах — при *постоянном давлении* и при *постоянном объеме* — теплоемкость приобретает свойства функции состояния, поэтому можно записать равенства:

$$C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} = \left(\frac{\delta Q_{v}}{\partial T}\right) \qquad \text{if} \qquad C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P} = \left(\frac{\delta Q_{p}}{\partial T}\right)$$
 (2)

где C_V и C_p — теплоемкости соответственно при постоянном объеме и при постоянном давлении, U — внутренняя энергия и H — энтальпия системы. Численные значения производных $\left(\frac{\delta Q_p}{\partial T}\right)$, $\left(\frac{\delta Q_v}{\partial T}\right)_V$ определяют с помощью калориметра. Как правило, опыты прово-

дят в изобарических условиях, то есть измеряют C_p ; а в результате теоретических расчетов получают C_V . Для решения практических задач в большинстве случаев достаточно знать порядок разности C_p – C_V . Для конденсированных фаз она мала, особенно при низких температурах.

<u>Расчет изохорной теплоемкости</u>. Теплоемкость кристаллического вещества можно представить в виде суммы следующих составляющих:

$$C_V = C_q + C_e + C_m + C_f + C_Y + C_B,$$

где C_q – решеточная составляющая теплоемкости, C_e – электронная составляющая, C_m – магнитная составляющая, C_f – составляющая, связанная с заселением более высоких энергетических уровней (эффект Шоттки), C_Y – составляющая, связанная с процессами упорядочения (структурного, магнитного и др.), C_B – составляющая, обусловленная образованием равновесных вакансий в решетке. Наибольший вклад при не очень высоких температурах вносит решеточная составляющая, которая рассматривается в теориях Эйнштейна и Дебая.

В модели Эйнштейна предполагается, что кристаллическая решетка состоит из 3N одинаковых гармонических осцилляторов – атомов, совершающих колебания в узлах решетки. Колебания каждого атома происходят независимо от колебаний соседних атомов, колебательное движение изотропно (частота всех колебаний одинакова и равна v). При таких допущениях теплоемкость атомного кристалла может быть рассчитана по формуле:

$$C_V \cong C_q = \frac{3R(\Theta_E/T)^2 e^{\Theta_E/T}}{\left(e^{\Theta_E/T} - 1\right)^2},\tag{3}$$

где $\Theta_{\rm E} = \frac{h V}{k}$ — характеристическая температура Эйнштейна, которую в некоторых случаях можно рассматривать и как варьируемый параметр. При высокой температуре ($\Theta_{\rm E}/T \to 0$) изохорная теплоемкость одноатомного кристалла приближается к предельному значению 3R, согласующемуся с экспериментально полученным законом Дюлонга и Пти: теплоемкость одноатомных твердых кристаллических веществ $C_p \approx 26.4$ Дж/моль·К. Уравнение (3) дает хорошие результаты в области высоких температур, объясняет стремление теплоёмкости к нулю при $T \to 0$, однако не описывает экспериментально наблюдаемую степенную зависимость αT^n вблизи абсолютного нуля. Обычно n=3 (закон кубов Дебая¹), но для веществ со слоистой и цепочечной структурой n может быть равно 2 или 1, соответственно².

Зависимость теплоемкости от температуры. Результатом измерения теплоемкости является набор значений T и C_x (x=p,V). Аппроксимацию экспериментальных данных проводят разными способами: с использованием комбинаций функций Дебая и Эйнштейна, с помощью сплайн-функций, полиномиальных зависимостей и др. Наиболее распро-

² Часто по показателю степени судят о гетеродинамичности структуры соединения, т.е. о присутствии в ней разных структурных мотивов.

¹ Строго закон кубов выполняется для интервала температур $0 < T < 0.1~\theta_D$, где θ_D - характеристическая температура Дебая

страненные полиномиальные зависимости с варьируемыми параметрами а:

$$C_P = a_1 + a_2 T + a_3 T^2 + \dots (4.a)$$

$$C_P = a_1 + a_2 T + a_3 T^{-2} + \dots$$
 и т. п. (4.б)

строгого физического обоснования не имеют; их можно использовать только для интерполяции данных и, как правило, при температурах выше комнатной. Попытки экстраполировать эти функции за пределы температурного интервала, для которого находились значения коэффициентов a_i , могут приводить к некорректным значениям теплоемкости исследуемого вещества.

Часто для обработки результатов низкотемпературных адиабатических измерений используют функции вида:

$$C_P(T) = \sum_{i} a_i \left(1 - e^{-0.001T} \right)^i \tag{5}$$

В настоящей работе предлагается аппроксимировать экспериментальные данные с помощью комбинации функций Планка-Эйнштейна:

$$C_P(T) = 3R \sum_i a_i \frac{\left(\Theta_i / T\right)^2 e^{\Theta_i / T}}{\left(e^{\Theta_i / T} - 1\right)^2} \tag{6}$$

где a_i , Θ_i (i=1,2,...) — варьируемые параметры, которые подбираются так, чтобы наилучшим образом описать данные адиабатической калориметрии. Зависимость (6), в отличие от (3), не имеет строгого физического смысла, но позволяет не только интерполировать, но и корректно экстраполировать значения $C_p(T)$ в широком интервале температур (вплоть до 0 K), что принципиально отличает ее от полиномиальных функций типа (4).

<u>Вычисление термодинамических функций с помощью теплоемкости</u>. Стандартную энтропию и высокотемпературную составляющую энтальпии (или приращение энтальпии, *англ*. heat content) индивидуального кристаллического вещества, не претерпевающего фазовых переходов в исследуемом интервале температур, вычисляют по формулам:

$$S_T^{\circ} - S_0^{\circ} = \int_0^T \frac{C_p}{T} dT , \qquad (7)$$

$$H_T^{o} - H_0^{o} = \int_{0}^{T} C_p dT . (8)$$

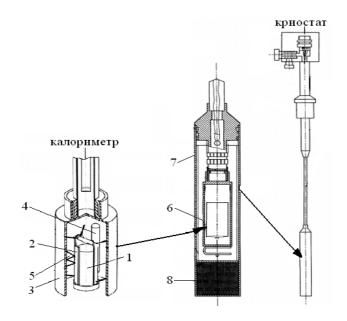
В выражение (7) входит $S^0(0)$ — энтропия вещества при T=0 К. Согласно третьему началу термодинамики, при 0 К энтропия идеального кристалла равна нулю, однако для ряда веществ при T=0 упорядочение не достигается, в этом случае при термодинамических расчетах следует учитывать, так называемую, *остаточную энтропию*.

В лабораторной работе предлагается рассчитывать термодинамические свойства

веществ, для которых не наблюдалось каких-либо аномалий на кривых зависимости теплоемкости от температуры в интервале от 7 до 300 K, а остаточная энтропия отсутствовала. Для расчета S^{o}_{298} и $\left[H^{o}_{298}-H^{o}_{0}\right]$ по результатам измерений $C_{p}(T)$ необходимо провести интегрирование функций $C_{p}=f_{1}(T)$ и $C_{p}/T=f_{2}(T)$.

ІІ. ОПИСАНИЕ ЭКСПЕРМЕНТА

Вакуумная адиабатическая калориметрия является основным методом высокоточных измерений теплоемкости вещества в интервале температуры от 5 до 370 К. Результаты измерений теплоемкости, которые предлагается обработать в рамках расчетного практикума, получены на автоматизированных вакуумных адиабатических калориметрах методом дискретного ввода энергии (см. рис.1).



- 1 цилиндрический контейнер;
- 2 медная гильза с нагревателем;
- 3 адиабатическая оболочка;
- 4 железо-родиевый термометр сопротивления;
- 5 4-х спайная (медь-железо)/хромель дифференциальная термопара;
- 6 радиационный экран: лавсановая пленка, покрытая алюминием;
- 7 вакуумная рубашка;
- 8 угольный адсорбер.

Рис. 1. Вакуумный адиабатический калориметр и криостат

Контейнер объемом ~ 1 см 3 из титана (или нержавеющей стали) плотно вставляется в медную гильзу, на внешнюю поверхность которой навит манганиновый нагреватель ($R=300\,$ Ом). Для увеличения скорости выравнивания температур в контейнер вставлена S-образная медная фольга, касающаяся его противоположных стенок. Температура во всей исследуемой области от (5 до 373) К измеряется с помощью железо-родиевого термометра сопротивления, отградуированного в термодинамической шкале МТШ-90, с точностью $\pm 5 \cdot 10^{-3}\,$ К. Термометр сопротивления ($R_0=50\,$ Ом) расположен на внутренней поверхности адиабатической оболочки для уменьшения балластной теплоемкости калориметра. Разность температур между калориметром и оболочкой контролируется с помощью $4^{\rm x}$ спайной дифференциальной термопары (медь—железо)/хромель и поддерживается в пределах

 $\pm (1-3)\cdot 10^{-3}$ К. Точность измерения температуры в калориметрическом опыте, осуществляемого системой: термометр сопротивления — дифференциальная термопара, составляет $\pm 1\cdot 10^{-2}$ К. Для минимизации теплообмена излучением адиабатическая оболочка калориметра обернута несколькими слоями лавсановой пленки, покрытой алюминием (последний выполняет роль радиационного экрана). Высокий вакуум в достигается за счет адсорбции на угольном адсорбере, охлаждаемом жидким азотом. Благодаря малым размерам, криостат с калориметром погружается непосредственно в транспортные сосуды Дьюара с жидкими хладагентами (гелием или азотом).

Приборы укомплектованы специальным программным обеспечением для регистрации температуры и количества электрической энергии, подводимой к калориметру, поддержания адиабатических условий проведения опытов, сбора и первичной обработки полученных данных. Измерения теплоёмкости проводят ступенчато с заданным «шагом» по температуре (обычно 1-1.5 K, иногда до 7 K). Каждый «шаг» разделён на 6 периодов (см. рис. 2):

- 1) нагрев калориметра с помощью встроенного электронагревателя с постоянным сопротивлением до заданной начальной температуры;
- 2) установление термического равновесия в калориметрической ячейке;
- 3) **начальный период опыта** (3 5 минут) выход калориметра на режим с постоянной (очень малой) скоростью изменения температуры [dT/dt, K/cek], в этом периоде определяют участок, так называемого, начального хода, который аппроксимируют линейной зависимостью;
- 4) **главный период опыта** соответствует прохождению через нагреватель калориметра тока I при постоянном напряжении U (IU = const) за точно измеренный промежуток времени t; количество энергии, затраченной при этом на нагревание контейнера с образцом, рассчитывают по формуле

$$Q_{\Sigma} = \int_{0}^{t} IUdt$$

- 5) установление температурного равновесия в калориметре после выключения нагрева (обычно от 4 до 15 минут);
- 6) **конечный период опыта** выход калориметра на режим dT/dt = const (конечный ход) и аппроксимация линейного участка кривой T(t).

Начальную и конечную температуры калориметрического опыта (T_1 и T_2) рассчитывают как точки пересечения экстраполированных линейных участков 3-го и 6-го периодов с вертикальной линией, проведенной через середину главного периода опыта ($t_{\rm m}$). Таким способом учитывают теплообмен калориметра с оболочкой и окружающей средой.

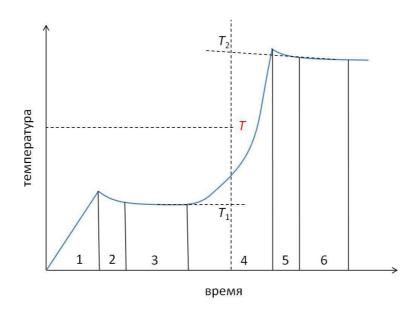


Рис.2. Кривая температура-время в опыте по измерению теплоемкости в адиабатических условиях

Удельную теплоёмкость исследуемого вещества относят к средней температуре T и рассчитывают по формуле

$$C_p = \frac{Q}{\Delta T \cdot m} = \frac{Q_{\Sigma} - Q_0}{(T_2 - T_1)m},\tag{9}$$

где m — масса исследуемого вещества, Q_0 — количество энергии, затраченной на нагревание пустой ячейки (без вещества), которую определяют в предварительных опытах по градуировке калориметра.

ІІІ. ОБРАБОТКА ПЕРВИЧНЫХ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Интегрирование можно проводить двумя разными способами: численно и аналитически.

³ Численное интегрирование можно также провести с помощью метода прямоугольников (левых, правых, средних), метода парабол (Симпсона) или метода Монте-Карло.

$$\int_{T_i}^{T_2} f(T)dT = \sum_{i} \left(T_{i+1} - T_i \right) f(T_i) + \frac{\left(T_{i+1} - T_i \right) \left(f(T_{i+1}) - f(T_i) \right)}{2}, \tag{10}$$

где $f(T_i)$ - значение функции $C_p(T)$ или $C_p(T)/T$ при T_i .

Аналитические методы. Для аналитического вычисления определенного интеграла необходимо аппроксимировать экспериментальные данные какой-либо функцией, заданной в явном виде. Недостатки полиномиальных зависимостей отмечены выше; в рамках расчетного практикума предлагается использовать функцию (6). Для нахождения численных значений параметров a_i , Θ_i можно использовать любой способ статистической обработки данных: метод наименьших квадратов, метод максимального правдоподобия и др. Практикум укомплектован готовой программой аппроксимации первичных экспериментальных данных, с помощью которой студенты могут рассчитать значения параметров, минимизируя сумму квадратов или абсолютные значения отклонений между расчетными и экспериментальными данными. Далее, используя полученные значения a_i , Θ_i и уравнения взаимосвязи между теплоемкостью, энтропией и высокотемпературной составляющей энтальпии:

$$S^{\circ}(T) = 3R \sum_{i} a_{i} \left(\frac{\Theta_{i}/T}{e^{\Theta_{i}/T} - 1} - \ln\left(1 - e^{-\Theta_{i}/T}\right) \right)$$

$$\tag{11}$$

$$H_T^{\circ} - H_0^{\circ} = 3R \sum_i a_i \Theta_i \left(e^{\Theta_i/T} - 1 \right)^{-1},$$
 (12)

учащиеся самостоятельно программируют функции для расчета $S^{\rm o}(T)$ и $\left[H_T^{\rm o}-H_0^{\rm o}\right]$ с шагом по температуре 50 и 100 К. В результате выполнения этой части работы должны быть получены таблицы термодинамических свойств в формате справочного издания.

По заданию преподавателя рассчитанные значения теплоемкостей можно сравнить с оценками, которые часто используют при отсутствии экспериментальных данных.

<u>Правило Коппа</u>: теплоемкость вещества равна сумме теплоемкостей элементов, входящих в его состав. По <u>соотношению Келли С</u> твердого соединения, состоящего из n атомов, можно оценить по формуле $C_V = (25.9 \div 26.8) \cdot n$ (Дж ·К⁻¹·моль⁻¹). Необходимую для оценки информацию о теплоемкостях простых веществ или составляющих можно взять из электронной базы данных NIST http://webbook.nist.gov/chemistry/.

IV. РАСЧЕТНАЯ ЧАСТЬ

Расчетная часть работы состоит из следующих этапов:

1) <u>Получение набора значений теплоемкости при различной температуре из первичных</u> экспериментальных данных T, ΔT и Q.

Для расчета изобарной теплоемкости C_p следует воспользоваться формулой (9) с учетом молярной массы исследуемого соединения (в эксперименте получают значения Q в Дж на г исследуемого вещества).

2) Экстраполяция к 0 К экспериментально измеренных значений теплоемкости в интервале от 5 до 10-15 К с помощью закона кубов Дебая.

Используя несколько (4÷6) первых экспериментальных точек, надо определить параметр α в выражении $C_p = \alpha T^3$. Рассчитанные значения теплоемкости с шагом 1 К добавляются в таблицу с исходными данными, после чего проводится аналитическое интегрирование функций $C_p(T)$ и $C_p(T)/T$ на участке 0-10 К и численное интегрирование при T > 10 К.

3) <u>Численное интегрирование первичных экспериментальных данных в координатах</u> $C_p(T) = f(T)$ и $C_p/T = f(T)$.

Вычисления можно провести в любой программе для работы с электронными таблицами. Использование программы Excel для расчета интеграла с помощью метода трапеций проиллюстрировано ниже. В ячейку С3 надо ввести формулу

$$(A3-A2)*B2 + (A3-A2)*(B3-B2)/2 + C2,$$

что в случае расчета приращения энтальпии соответствует

$$(T_2 - T_1)^* C_{T_1} + (T_2 - T_1)^* (C_{T_2} - C_{T_1})/2 + [H_{T_1} - H_0].$$

Затем содержимое ячейки C3 скопировать буксировкой до нужного значения аргумента (на рис. это x = 3). Число в ячейке C17 (9) представляет собой искомый интеграл.

	A	8	C	D	E	
1	x	y	Частные суммы	Q		
2	0	0		=(A3-A	2)*B2+(A3-	
3	0,2	0,4	0,04	(A2)*(B	3-B2)/2+C2	- 6
4	0,4	0,8	0,16			
5	0,6	1,2	0,36	Ommon	HO United Street	1111
6	0,8	1,6	0,64			
7	1	2	1			П
8	1,2	2,4	1,44			
9	1,4	2,8	1,96			Т
10	1,6	3,2	2,56			П
11	1,8	3,6	3,24			Т
12	2	4	4			П
13	2,2	4,4	4,84			П
14	2,4	4,8	5,76			
15	2,6	5,2	6,76			
16	2,8	5,6	7,84			П
17	3	6				т

В отчете по этой части работы приводятся значения параметра α зависимости $C_p = \alpha T^3$, соответствующий рисунок $C_p(T)$ для T=0-10 К с нанесенными экспериментальными точками и рассчитанные значения $S^{\rm o}_{298}$ и $\left[H^{\rm o}_{298}-H^{\rm o}_{0}\right]$

4) Аппроксимация экспериментальных данных с помощью комбинации функций Планка-Эйнштейна

В результате выполнения 4-й и 5-й частей работы должны быть получены параметры уравнения (6) и рассчитаны значения термодинамических свойств изучаемого вещества с шагом 100 К.

В файл с расширением *.dat копируются значения температуры и мольной теплоемкости исследуемого вещества (правила записи данных в файле приведены ниже, см. «Указания по работе с программой «Ср_арргох»). При нахождении параметров a_i и Θ_i (i=1,2,...) с помощью программы сначала надо проверить возможность аппроксимации исходных данных с минимальным числом неизвестных (i=1), и только в случае неудовлетворительного описания число параметров следует увеличить. При расчете следует обращать внимание на статистическую значимость коэффициентов a_i , Θ_i и значение суммы квадратов отклонений, при варьировании числа параметров она должна уменьшаться.

5. Расчет сглаженных значений термодинамических свойств изучаемого соединения.

Для расчета сглаженных значений функций C_p , S^o и $\left[H_T^o - H_0^o\right]$ в электронной таблице программируются формулы (6, 11, 12). Обратите внимание, что рассчитываемые значения должны быть даны с достаточным количеством значащих цифр. В термодинамике принято записывать одну запасную (незначащую) цифру из-за возможности огрубления результатов последующих расчетов за счет накопления погрешностей.

В отчете по этой части работы следует привести параметры зависимости (6), график $C_p(T)$ с экспериментальными точками и таблицу термодинамических свойств исследуемого вещества: $C_p(T)$, $S^{\rm o}(T)$ и $\left[H_T^{\rm o}-H_0^{\rm o}\right]$ от 0 до 500 К (первые значения температуры 0, 50 и 100 К, далее с шагом 100 К).

<u>Указания по работе с программой «fminsi</u>» (аппроксимация с использованием функций Планка-Эйнштейна)

Входной файл имеет расширение *.dat и оформляется в соответствии с шаблоном (см. ниже). В первую строку вводится название вещества, его масса. В двух следующих строках задаются подписи осей абсцисс и ординат, соответственно. В четвертой строке указывается число точек, по которым будет проводиться аппроксимация. Например, если файл содержит координаты 50-и точек, а данному параметру присвоено значение 30, то программа обработает только первые 30 точек. Максимальное число обрабатываемых пар значений в учебной версии программы составляет 100. Пятая строка отделяет комментарии от собственно обрабатываемых значений, в качестве разделителя в строке ставится 0. Экспериментальные данные (T, C_p) разделены одиночным пробелом⁴.

_

⁴ Обратите внимание, десятичные дроби должны содержать точку, а не запятую.

Номер	Содержание строки	Комментарий
строки		
1	Heat capacity (IrO2)	Служебная информация
2	Temperature	Служебная информация
3	Ср	Служебная информация
4	58	Число значений для анализа
5	0	Число последних значений из списка, которые
		нужно исключить из рассмотрения
6	6.13 0.047	Пара значений Т-Ср (через пробел)
7	8.13 0.089	Пара значений Т-Ср
8	9.67 0.125	Пара значений Т-Ср
9	11.3 0.185	Пара значений Т-Ср

В окошке «Problem details» значение N задает число функций Планка-Эйнштейна для аппроксимации данных. Соответственно, количество параметров будет равно 2N. Чем больше N, тем выше точность аппроксимации. Как правило, достаточно двух-четырех функций для удовлетворительного описания зависимости. Окошко «Norm» позволяет выбрать метод обработки данных: метод наименьших квадратов (МНК) или поиск минимума суммы абсолютных отклонений. В результате расчета на экран выводится график с рассчитанной кривой и нанесенными экспериментальными точками, а также массив выходной информации в окне «Solution». Параметры функции (6) выводятся в следующем виде:

```
Solution:

a[1] = 1.19883E+000 ( 4.899)

Theta[1] = 1.22145E+002 ( 9.360) K

a[2] = 2.92002E+000 ( 3.241)

Theta[2] = 9.12515E+002 ( 44.444) K

a[3] = 2.95612E+000 ( 3.562)

Theta[3] = 3.12988E+002 ( 21.164) K
```

Здесь по порядку: a_1 , Θ_1 , a_2 , Θ_2 , a_3 , Θ_3 , в скобках приведены погрешности параметров. Выводится также таблица значений температур, заданных и рассчитанных значений теплоемкостей и разница этих значений

```
T Cp(exp) Cp(calc) delta
7.25 0.126 0.000 0.12551
8.76 0.228 0.005 0.22317
9.65 0.310 0.015 0.29419
```

В нижней части рабочего окна приведены точки при T = 0 - 10 К с шагом 1 К и рассчитанное значение стандартной энтропии (в СИ) при 298 К. Нулевые значения теплоемкости при 1, 2, 3 и 4 К означают, что значением теплоемкости меньше $1 \cdot 10^{-5}$ Дж ·К $^{-1}$ ·моль $^{-1}$.

```
Extrapolation to Zero

T = 1 Cp(extr) = 0

T = 2 Cp(extr) = 0

T = 3 Cp(extr) = 0

T = 4 Cp(extr) = 0

T = 5 Cp(extr) = 0,000001

T = 6 Cp(extr) = 0,000031

T = 7 Cp(extr) = 0,000404

T = 8 Cp(extr) = 0,002675

T = 9 Cp(extr) = 0,011312
```

```
T = 10 \text{ Cp(extr)} = 0.035059
S(298) ~ 112,301
```

Дополнительно в рабочем окне выводятся погрешности аппроксимации

```
Approximation errors:
Root mean square (RMS) = 0.622
Mean absolute error = 0.562
Maximum absolute error = 0.943 at T = 500
```

Общий вид рабочего окна программы и графика приведен ниже

